Università degli Studi di Siena Corso di Laurea FTA - A.A. 2012/13 Corso di Fluidi e Termodinamica Esame del 19/12/2013

- 1) Un disco disco D_1 di sezione $S=50~cm^2$ è appeso al soffitto; un secondo disco D_2 della stessa sezione e di massa M=20~g è posto quasi a contatto con il disco D_1 , in modo da lasciare una piccola intercapedine tra i due. Si osserva che soffiando aria (densità $\rho=1.3~mg/cm^3$) nell'intercapedine, il disco D_2 aderisce al disco D_1 , mentre appena si smette di soffiare il disco D_2 cade. Calcolare con quale velocità minima deve fluire l'aria nell'intercapedine fra i due dischi, perché il secondo non cada.
- 2) Un gas perfetto funziona da fluido in un motore termico, compiendo un ciclo reversibile costituito da due isoterme e da due isocore. Sapendo che valgono le relazioni $T_A=2T_C$ e $V_B=2V_A$ e che il rendimento del motore è 17.83%, determinare se il gas è mono o biatomico.
- 3) Una resistenza elettrica di potenza P = 2000 W si trova inizialmente a temperatura $T_1 = 10 \,^{\circ}\text{C}$. Sapendo che la sua massa è m=5 g e il suo calore specifico è c = 850 J/(kg K), calcolare la sua variazione di entropia in 1 s prodotta dal riscaldamento causato dal passaggio di corrente.

SOLUZIONI

1) La corrente d'aria nell'intercapedine abbia velocità v. La pressione p di questo getto è minore di quella atmosferica, e poiché sotto il disco D_2 la pressione è quella atmosferica p_0 , nasce una forza risultante diretta dal basso verso l'alto pari a

$$F=(p_0 - p) S$$

Si determina p applicando il teorema di Bernoulli, considerando l'aria ferma al di fuori dell'intercapedine

1/2
$$\rho$$
 v² + p = p₀
da cui p₀ - p = 1/2 ρ v²
F=(p₀ - p) S = 1/2 ρ v² S

Perché il disco D₂ non cada deve essere F>= Mg

Quindi il valore minimo di v è

$$1/2 \rho v^2 S = Mq$$

$$v = sqrt(2 Mg/ \rho S) = 7.77 m/s$$

2) Il rendimento è dato dal rapporto tra lavoro fatto e calore assorbito. Calcolo il lavoro e il calore scambiato in ogni ramo della trasformazione

AB isoterma
$$L_{AB} = nRT_A ln(V_B/V_A) = Q_{AB} > 0$$

BC isocora
$$L_{BC}$$
= 0 Q_{BC} = $nc_V (T_C - T_A) < 0$

CD isoterma
$$L_{CD} = nRT_C ln(V_D/V_C) = nRT_C ln(V_A/V_B) = Q_{CD} < 0$$

DA isocora
$$L_{DA}=0$$
 $Q_{DA}=nc_V (T_A-T_C)>0$

$$\eta = \frac{L_{AB} + L_{CD}}{Q_{AB} + Q_{DA}} = \frac{nRT_A \ln\left(\frac{V_B}{V_A}\right) + nRT_C \ln\left(\frac{V_A}{V_B}\right)}{nRT_A \ln\left(\frac{V_B}{V_A}\right) + nc_V \left(T_A - T_C\right)}$$

Sostituendo $T_A=2T_C$ e $V_B=2V_A$

$$\eta = \frac{RT_A \ln 2 - R\frac{T_A}{2} \ln 2}{RT_A \ln 2 + c_V \left(T_A - \frac{T_A}{2}\right)} = \frac{\frac{R}{2} \ln 2}{R \ln 2 + \frac{c_V}{2}}$$

da cui si ricava

$$c_V = \frac{2R\left(\frac{1}{2} - \eta\right)\ln 2}{\eta} = 2.5R = \frac{5}{2}R$$
 biatomico

3) La resistenza ha potenza pari a 2000W, quindi si riscalda al passaggio di corrente elettrica assorbendo 2000 J di calore ogni secondo. Dopo 1 secondo di riscaldamento la temperatura T_2 sarà data da

$$Q = mc (T_2 - T_1)$$
 da cui $T_2 = Q/mc + T_1$

La varazione di entropia si può calcolare come

$$\Delta S = \int_{T_1}^{T_2} \frac{\delta Q}{T} = \int_{T_1}^{T_2} \frac{mcdT}{T} = mc \ln \left(\frac{T_2}{T_1} \right) = mc \ln \left(1 + \frac{Q}{mcT_1} \right) = 4.16 \text{ J/K}$$